
U N I V E R S I T Y OF T A R T U

Faculty of Mathematics and Computer Science

Institute of Computer Science

Riivo Talviste

Web-based data entry in
privacy-preserving applications

Bachelor’s Thesis (4 CP)

Supervisor: Dan Bogdanov, MSc

Author: ... “.....” June 2009

Supervisor: “.....” June 2009

Allowed to defence
Professor: .. “.....” June 2009

TARTU 2009

Contents

Introduction 3

1 Privacy-preserving data collection 4
1.1 Motivation . 4
1.2 State of the art . 5
1.3 Our contribution . 5

2 Preliminaries 6
2.1 Cryptographic operations . 6
2.2 Cryptographic protocols . 7
2.3 The Sharemind framework . 8

3 A privacy-preserving data-collection system 10
3.1 Architecture . 10
3.2 Security . 11
3.3 Implementation . 11

4 A JavaScript-based solution 13
4.1 Technology overview . 13
4.2 Solution architecture . 13
4.3 Security analysis . 13
4.4 Implementation details . 14

5 A Flex-based solution 15
5.1 Technology overview . 15
5.2 Solution architecture . 15
5.3 Security analysis . 16
5.4 Implementation details . 17

Conclusion 18

Veebipõhine andmesisestus kõrgete privaatsusnõuetega rakendustes 19

References 21

2

Introduction

In recent years the world wide web has grown more and more popular. Thus,
many companies are also concentrating on providing their services on the web.
Online surveys, questionaries, auctions have become very popular as they are both
cheap and convenient for organizations and users. However, many of these services
require users to input confidential data so the question of preserving the privacy
of the data arises.

In this thesis we describe how this issue can be resolved at the moment and
offer better solutions. We concentrate on the example of Denmark, where a secure
nation-wide web-based auction was conducted in January 2008. We analyse the
architecture of this auction and describe some of its constraints and shortcomings.

Our goal is to propose a privacy-preserving data collection architecture. It
would enable us to gather and process confidential data so that the user insert-
ing the data would be the only one who knows the input. Such a technology
would make it easier to conduct web-based surveys, questionaries and auctions
with confidential data.

In Section 1 of this paper we give a short overview of different legal aspects
that regulate the handling of private data. We also briefly discuss the handling of
confidential data in the current state of art. Section 2 lists and defines some of the
cryptographic operations and protocols that are needed to understand this the-
sis. We also introduce the Sharemind framework which our proposed architectures
use to perform private computations. In Section 3 we give an overall description
of our proposed architecture, its security constraints and implementation details.
Section 4 gives a more detailed overview of the JavaScript-based solution. The ar-
chitecture described in this section is similar to the one used in the Danish auction
system and thus has the same security risks. However, usability is improved by
using the JavaScript technology. An architecture with stronger security guarantees
is detailed in Section 5. This solution uses secure connections and is implemented
with Adobe Flex framework.

3

1 Privacy-preserving data collection

1.1 Motivation

Data privacy issues can arise in response to information from a wide range of
sources. In this paper we consider privacy as information privacy — the protection
of personal data. The European Union directive on the protection of individuals
with regard to the processing of personal data and on the free movement of such
data [Cou95] defines personal data as any information relating to an identified
or identifiable natural person (data subject), where an identifiable person is one
who can be identified, directly or indirectly, in particular by reference to an iden-
tification number or to one or more factors specific to his physical, physiological,
mental, economic, cultural or social identity.

The Estonian Personal Data Protection Act [RTI07, RTI] defines sensitive per-
sonal data as:

1. data revealing political opinions or religious or philosophical beliefs, except
data relating to being a member of a legal person in private law registered
pursuant to the procedure provided by law;

2. data revealing ethnic or racial origin;

3. data on the state of health or disability;

4. data on genetic information;

5. biometric data (above all fingerprints, palm prints, eye iris images and genetic
data);

6. information on sex life;

7. information on trade union membership;

8. information concerning commission of an offence or falling victim to an of-
fence before a public court hearing, making of a decision in the matter of the
offence or termination of the court proceeding in the matter.

Accessing information from these sources and many more is regulated by laws
that make collecting, storing and analysing that kind of data extremely compli-
cated. However, in many cases the parties that are interested in the data — data
users — are in fact only interested in the data analysis results and not in the
original data itself. Therefore, by showing data users only the end results of data
processing, we could ensure the data donor’s information privacy by guaranteeing
that he or she is the only one who knows the complete input. To achieve that,
we have to bring data entry as close to the data donor as possible, so that the
confidential data would not pass through any third parties.

The Internet is a free and convenient medium for both data users and donors.
Thus, online surveys and other web-based data-mining applications are gaining

4

more popularity. In this paper we analyse different methods to preserve data
privacy in web-based applications.

1.2 State of the art

One way to preserve the data donor’s privacy is to keep his or her identity secret.
This means that no name, personal identification number or other identifying data
is asked. Nevertheless, there are still cases [BJ06] where the identity of the data
donor is revealed, based on the answers given by an anonymous data donor.

Another possible solution is to use secure connections between data donors and
users. SSL (Secure Socket Layer) tunnels are one way to ensure that confidential
data gets only to the right data user and that data integrity is preserved. However,
the data user still sees the confidential data and could use it for selfish reasons or
even distribute it to other parties.

In January 2008 in Denmark, a nation-wide exchange in a form of double
auction was carried out to rearrange sugar beet growing contracts between local
farmers and Danisco company. A survey was conducted together with the auction.
It showed that farmers really care about the confidentiality of their bids. Thus, it
was decided that the role of the auctioneer would be played by three independent
parties using secure multiparty computation. To make bidding more convenient for
farmers, a web-based application supporting secret sharing and secure multiparty
computation was used. It was suggested to be the first large-scale and practical
application of multiparty computation [BCD+08, Des].

1.3 Our contribution

In this paper we analyse the architecture of the Danisco auction and suggest im-
provements from the point of security guarantees and usability. Firstly, we increase
the usability of the Danisco auction’s architecture by using JavaScript technology.
Secondly, we propose a new architecture with improved security and implement it
with Flex technology.

5

2 Preliminaries

2.1 Cryptographic operations

Symmetric-key cryptography

Definition Consider an encryption scheme consisting of the sets of encryption
and decryption transformations {Ee : e ∈ K} and {Dd : d ∈ K}, respectively,
where K is the key space. The encryption scheme is said to be symmetric-key
if for each associated encryption/decryption key pair (e, d), it is computationally
“easy” to determine d knowing only e, and to determine e from d [MvOV96,
Chapter 1.5].

Symmetric-key encryption uses symmetric key algorithms, which means that
one and the same key is used to both encrypt and decrypt messages. Hence, all
of the communicating parties have to know that key. One of the major issues of
symmetric-key encryption is the key distribution problem — before the parties
can start to send encrypted messages, they have to agree upon and exchange the
secret key that they will be using. At the moment, AES (Advanced Encryption
Standard) is the standard used in symmetric-key encryption [DR01].

Public-key cryptography

Definition Consider an encryption scheme consisting of the sets of encryption
and decryption transformations {Ee : e ∈ K} and {Dd : d ∈ K}, respectively.
The encryption method is said to be a public-key encryption scheme if for each
associated encryption/decryption pair (e, d), one key e (the public key) is made
publicly available, while the other d (the private key) is kept secret. For the scheme
to be secure, it must be computationally infeasible to compute d from e [MvOV96,
Chapter 1.8].

In the case of public-key cryptography each party has its own pair of private
and public keys. The sender of a secret message first encrypts it with the receiver’s
public key and then sends the encrypted message. The receiver can then decrypt
the message with his private key. One of the advantages of public-key cryptography
is that no initial exchange of secret keys is required. Public-key cryptography uses
asymmetric key algorithms as the key used to encrypt the message is different from
the key used to decrypt it. Currently, the standard algorithm used in public-key
cryptography is RSA [RSA78].

Secret sharing

Definition Let s be the secret value. An algorithm S defines a k-out-of-n thresh-
old secret sharing scheme, if it computes S(s) = [s1, . . . , sn] and the following

6

conditions hold [Sha79, Dam02]:

1. Correctness: s is uniquely determined by any k shares from {s1, . . . , sn}
and there exists an algorithm S′ that efficiently computes s from these k
shares.

2. Privacy: having access to any k− 1 shares from {s1, . . . , sn} gives no infor-
mation about the value of s, i.e., the probability distribution of k− 1 shares
is independent of s.

Secret sharing is mainly used to protect sensitive data like cryptographic keys.
The data is split into a number of parts, called shares, that are distributed among
separate parties who protect their shares. To reconstruct the original data, all the
shares have to be recombined. The security assumptions of secret sharing schemes
state that gaining access to a number of shares lower than the defined threshold
gives no information about the secret value. The best-known secret sharing scheme
was proposed by Shamir [Sha79].

In our case, secret sharing gives us a simple method to protect the privacy of
the confidential data. The secret value is distributed into shares and each party
participating in multiparty computation is given one of the shares. Hence, no
single party can learn the original value.

2.2 Cryptographic protocols

Transport Layer Security

Transport Layer Security (TLS) and its predecessor, Secure Sockets Layer (SSL),
are cryptographic protocols used in networks, mostly on the Internet. These pro-
tocols provide security and data integrity by encrypting network connections on
the Transport Layer between its two endpoints.

TLS supports both unilateral (one way) and bilateral (both ways) authentica-
tion. However, in a common client-server scenario, only unilateral authentication
is used — client authenticates the server by verifing its certificate. The client itself
remains anonymous for the server. The bilateral authentication is more secure,
but requires both the server and the client to have a valid certificate.

Secure multiparty computation

Secure multiparty computation (MPC) can be defined as a scenario with more
than one party, where each party has an input value xi and together they want to
securely compute some function of these input values. Security in this case means
guaranteeing a correct output of the function as well as preserving privacy of the

7

input values, even if some parties cheat. To achieve that, the parties must exchange
messages and perform local computations to find the output value. Concretely, we
assume that we have inputs x1, . . . , xn, where party Pi knows xi, and we want to
compute f(x1, . . . , xn) = (y1, . . . , yn) such that each party Pi will learn the value
yi, but nothing else [CD04].

The parties need communication channels in order to exchange messages. Two
basic communication models are used in secure multiparty computation: crypto-
graphic model and information-theoretic model. In the cryptographic model, the
adversary has access to all the messages sent, however, it cannot modify the mes-
sages exchanged between honest nodes. In this case the communication is secure
if the adversary cannot break the cryptographic primitive used on the channel. In
the information-theoretic model all communication channels between the nodes are
secured so the adversary gains no information about the messages exchanged be-
tween honest nodes. This stands even if the adversary has unbounded computing
power [CD04].

The security model of a MPC protocol may be universally composable. This
allows us to run several independent instances of the protocol sequentially or in
parallel, without compromising the security [CD04].

2.3 The Sharemind framework

The Sharemind framework [BLW08] is a distributed virtual machine that allows
us to process data without compromising its privacy. It is achieved by using
secure multiparty computation protocols. The virtual machine consists of three
data-mining servers, called miners. MPC protocols allow miners to run various
computation algorithms on the data. However, none of the miners see the complete
input data. The protocol suite of the Sharemind framework is based on an additive
secret sharing scheme in the ring Z232 .

Provided that we have a secret value s, it is secret shared as follows. We take
two random values s1, s2 ∈ Z232 and compute s3 = (s − s1 − s2) mod 232 so that
s3 ∈ Z232 . Each of the three miners then gets one share from {s1, s2, s3}. The
secret value s can be reconstructed by computing s = (s1 + s2 + s3) mod 232.

To achieve reasonable balance between security and efficiency, the Sharemind
virtual machine works in the semi-honest model. In this model, all of the miners
are assumed to follow the protocol, but they may also be curious about the data.
So they could try to compute the secret value from the data available to them.

The Sharemind protocol currently supports privacy-preserving addition, mul-
tiplication with a constant, multiplication and comparison. These operations are
sufficient for data analysis. These protocols are also universally composable, thus,
they can be run sequentially to execute algorithms.

8

The current Sharemind implementation uses three data miners as it is the
most optimal case. Two-party MPC is slow by construction, but adding parties
increases the communication overhead. The privacy of the data is guaranteed if
none of the miners shares its data with others. To satisfy these requirements one
should choose three competing organizations as miners. The chosen organizations
should have no incentive to collude with each other. Also they should be interested
in keeping the privacy of the data. In most cases competing companies and data
protection agencies are good choices.

The Sharemind framework has an API (Application Programming Interface)
that can be used to interface it with a data analysis application. Applications
built with the controller library can communicate with the miners, send data and
ask computation results from them.

Each miner has its own database to save its shares. Thus it can be used to
save the data and use it for later processing. Each miner also has a set of built-in
algorithms and they give out only computation results.

9

3 A privacy-preserving data-collection system

3.1 Architecture

The lifecycle of private data in our proposed architecture is as follows (Figure 1).
The confidential data produced in the client’s computer is immediately distributed
into shares. Each share is then sent to a different miner’s web server that saves it
in a local database. A daemon application periodically queries that database for
new shares and converts and saves them to the corresponding miner’s database.
Miners can then use shares from their databases and MPC protocols to perform
data analysis. The local database is used for buffering and helps to keep the
architecture more robust. It means that collecting and secret sharing confidential
data can be performed independently from processing the data.

Miner 2

Web server

Miner
database

Local
database

Daemon

Miner 1Web server

Miner
database

Local
database

Daemon

Miner 3

Web server

Miner
database

Local
database

Daemon

MPC

Web server

Client's
computer

share

Application

Host organization 1

Host organization 2

Host organization 3

Host organization boundary

share

share

Figure 1: Data movement in the proposed architecture.

There is also another solution where the client sends its shares directly to all
three miners. However, this would require miners to also act as web servers, possi-
bly with SSL support. In the current implementation of the Sharemind framework
the miners can only access shares from their own internal databases.

10

3.2 Security

In the following we describe how the security is preserved as the confidential data
moves between components. If the connection from client’s computer to a miner’s
web server is secured using the HTTPS protocol, then the TLS/SSL protocol
provides the server authentication and channel security at that point. The solution
with secure HTTPS connections between the client and a miner’s web server is
implemented with Flex technology and detailed in Section 5.

On the other hand, if the standard HTTP protocol is used, then the client also
receives three public keys along with the application. Each of these keys is then
used to encrypt one of the shares. Encrypted shares are then sent back to the
web server that provided the application. The web server sends each encrypted
share to the corresponding miner’s web server that will then use its private key
to decrypt the share. In this case public-key encryption is used for keeping the
shares in secret. The case with unsecured HTTP connections is implemented with
JavaScript technology and described in Section 4.

The data movement from the miner’s web server to a local database and later
to the miner’s database takes place inside the organization. Thus, we rely on
the security guarantees of that company or data protection agency. In the data
processing phase where the miners use MPC protocols, the confidentiality of the
data is provided by the Sharemind framework.

3.3 Implementation

To prove the feasibility of our solution, we implemented it with two technologies:
JavaScript and Flex. These technologies have different features and constraints
so the implemented architectures are also slightly different. The corresponding
architectures are discussed in more details in Sections 4 and 5.

In the following, we explain how the proposed architecture works in a prototype
survey application. Firstly, the user goes to a web page and receives a questionary
as a part of a survey. In the case of JavaScript technology, the questionary is a
HTML form, whereas in the case of Flex technology, it is Flex application embed-
ded in the web page. The user can then fill in the questionary and click the “Send”
button. Each of the inserted values is then distributed into shares and each share
sent to a different miner’s web server. Each miners’s web server saves the received
share to its local MySQL database. The web server also receives a unique session
identifier from the user and saves it in the same database.

The WebControllerProxy is a daemon application which is scheduled to run
periodically after a specific time interval. This application is built with the Share-
mind framework controller library and used in each host organization. Its task is
to poll the local MySQL database for new shares, sort them by the session identi-

11

fiers and save the shares to the miner’s internal database. The miners can then use
the shares from their internal databases and the MPC protocols of the Sharemind
framework to run data analysis algorithms on the confidential data inserted by the
user.

The described implementation is not a complete system. It is a proof-of-concept
of the solutions proposed in this paper. The source code of the implementation is
also included with the thesis.

12

4 A JavaScript-based solution

4.1 Technology overview

In this section we propose an architecture and its implementation with JavaScript,
an ECMAScript dialect. JavaScript is a widely spread scripting language, built
into most of the common web browsers like Mozilla Firefox, Apple Safari, Opera,
Konqueror, Google Chrome, etc. Microsoft’s Internet Explorer has its own dialect
of ECMAScript, named JScript. However, it is compatible with JavaScript in most
of the cases.

4.2 Solution architecture

The architecture itself is almost identical to the architecure used in the Danisco
auction. The data collection scheme is as follows (Figure 2). The client connects
to a web server hosting the data entry system and receives a JavaScript applica-
tion that runs on the client’s computer. Together with the application, the client
receives three public keys of three different miner web servers. After the confi-
dential data is entered, the application performs secret sharing and encrypts each
share with a different public key. All of the encrypted shares are sent back to
the initial web server, which distributes them among different miner web servers.
Each miner’s web server uses its corresponding private key to decrypt the share
and save it in a local database. The rest of the process is the same as explained
in the general case.

This architecture uses public-key encryption on the shares, because JavaScript
applications cannot make direct secure connections to the miners’ web servers.
Most of the contemporary web browsers do not allow JavaScript applications to
make connections outside the DNS domain where the application is hosted. This
constraint is used in order to prevent cross-site scripting (XSS) with JavaScript.
To solve that problem, the web server that hosts the JavaScript application is used
as a proxy. However, to prevent that web server from recombining the shares, all
of the shares are encrypted with different public key.

4.3 Security analysis

Since the architecture is the same as in the Danisco auction, the same security
issues also apply. The web server that provides the client with JavaScript applica-
tion and public keys, could send the client three self-generated keys instead. Thus,
also having the matching private keys for these public keys, the owner of this web
server could decrypt all the shares and therefore recombine the original data. This
is possible, because all the encrypted shares are sent back to a single web server.

13

Miner 2

Web server

Miner
database

Local
database

Daemon

Miner 1Web server

Miner
database

Local
database

Daemon

Miner 3

Web server

Miner
database

Local
database

Daemon

MPC

Web server

Client's
computer

Host organization 1

Host organization 2

Host organization 3

Host organization boundary

enc. share

JavaScript
application with

public keys

encrypted
shares

enc. share

enc. share

Figure 2: The proposed architecture using JavaScript technology and three shared
public keys.

4.4 Implementation details

While the Danisco auction used a Java applet, we use JavaScript for client-side
logic. The advantage is that most of the contemporary web browsers have a built-
in JavaScript engine, which means that the client does not have to install any
additional software. Moreover, JavaScript applications usually use fewer resources
than Java applets which run in their own Java virtual machine.

The client-side application needs RSA encryption functions to perform encryp-
tion of secret shares. JavaScript does not have a built-in library for that, so in our
implementation we use the RSA library for JavaScript by Tom Wu [Wu].

Moreover, JavaScript does not have a cryptographically secure pseudo-random
number generator (CSPRNG) that would be sufficient to use in this architecture
to perform secret sharing and public-key cryptography. Instead we use an Arcfour
pseudo-random number generator (PRNG) and initialize it with the system time
in milliseconds as a seed. The Arcfour PRNG is also included in the RSA library
by Tom Wu. The absence of sufficient CSPRNG is a security risk that should be
solved on the technology level.

14

5 A Flex-based solution

5.1 Technology overview

The architecture proposed in this section uses Adobe Flex as a technology platform.
Flex is a free, open source framework for building web applications that deploy
consistently on all major browsers, desktops, and operating systems. It provides a
standards-based language and programming model that supports common design
patterns. Flex uses MXML, a declarative XML-based language, to describe user
interface layout and behaviors. ActionScriptTM 3 is an object-oriented program-
ming language, that is used in Flex to create client logic. Applications created
with Flex can run in the browser using Adobe Flash R© Player software or on the
desktop on Adobe AIRTM, the cross-operating system runtime [Incb]. In our im-
plementation we use Flex version 3, the latest release of the technology at the time
of completing this paper.

Flex is very similar to Adobe Flash technology. The main difference is that
Flex is designed to be used by developers, whereas Flash is more for designers.
They both produce a SWF file that is run in client’s web browser by Adobe Flash
Player software. In order to run the SWF file produced by Flex compiler, a client
has to have Adobe Flash Player version 9 or newer installed. As a Millward Brown
survey [Inca], conducted in December 2008 shows, about 99.0% of Internet-enabled
desktops and wide range of devices are using Adobe Flash Player software platform,
while Java is run by 81.0%. Thus, using Flex technology should not require any
additional installations from most of the clients, which makes data-mining with
this technology more convenient for end users.

It must be pointed out that while Flex is a free and open source framework, the
Adobe Flash Player is a proprietary product of the Adobe Systems Incorporated.
Also there are no free wide spread Flash players that could run SWF files generated
by the Flex compiler.

5.2 Solution architecture

The solution is quite similar to the architecture discussed in previous section, with
a few important dfferences. The data collecting process is detailed on Figure 3.
The client connects to a web server and receives a client-side Flex application.
After the confidential data is inserted by the client, the application performs secret
sharing on it and connects to three different miner web servers, using secure HTTP
(HTTPS) connections. Each miner’s web server receives one of the shares and saves
it in a local database. These shares are then accessed by a daemon application
like described in the overall architecture in Section 3.1.

15

Miner 2

Web server

Miner
database

Local
database

Daemon

Miner 1Web server

Miner
database

Local
database

Daemon

Miner 3

Web server

Miner
database

Local
database

Daemon

MPC

Web server

Client's
computer

share

Flex
application

Host organization 1

Host organization 2

Host organization 3

Host organization boundary

share

share

HTTPS connection

Figure 3: The proposed architecture with Flex technology and direct HTTPS
connections.

5.3 Security analysis

In the architecture described in the previous section, the client has to trust the
web server to give him or her the correct public keys. Fortunately, in this case,
the client does not have to trust anyone unconditionally. The client connects to
all the miners directly using the HTTPS protocol, which means that he or she can
examine each miner’s certificate and decide whether to trust them or not. Thus,
we still use public-key cryptography, but the trust relationships are established
directly.

In real life, however, the miners’ certificates should be signed by a high level
CA (Certificate Authority) that is already trusted by the client — this makes the
process more transparent. Unfortunately, this also poses a security risk. The web
server that sends the application to the client could send him or her an application
with a modified set of miner addresses. Provided, that the miners have certificates
that are already trusted by the client, the malicious owner of the web server would

16

receive all the shares and thus know the confidential data. However, finding a
trusted CA to sign malicious certificates is not an easy task. This makes that kind
of attack less probable.

5.4 Implementation details

As the data miners are controlled by different organizations or agencies, they
are also most probably in different DNS domains. To allow Flex application to
query servers on different domains than its own, the servers must have a XML file
called crossdomain.xml in their document root directory. For example, provided
that the client running the Flex application has an IP address 192.168.10.101, the
contents of the crossdomain.xml should be similar to the following example:

<cross-domain-policy>

<allow-access-from domain="192.168.10.101" secure="true"/>

</cross-domain-policy>

The domain attribute may also contain wildcards, e.g. domain="*.example.com"
or domain="*", to allow connections from different subdomains or from all IP ad-
dresses.

Since the Flex application uses HTTPS connections to access miner web servers,
the Flex application itself also has to be served using secure HTTP connection.
This behaviour can be overridden by setting the secure attribute in previous
example to false, however, this creates an additional security risk.

As with the JavaScript language, Flex framework does not have a built-in
CSPRNG to use in secret sharing the confidential data. To produce random
numbers, we use the Park Miller “minimal standard” linear congruential pseudo-
random number generator [PM88], which is implemented in Flex by Michael
Baczynski [Bac].

This algorithm is capable of producing 31-bit random values, however, the
Sharemind framework uses 32-bit values to hold secret data and shares. One
possible solution to get 32-bit random values usable in cryptography is as follows.
The Flex application makes a secure connection directly to each miner’s web server
and requests a random number. Since the web servers run on an operating system,
they most probably have access to a CSPRNG. The Flex application then combines
all three random numbers, e.g. XOR-s them together, and uses the result as the
needed random value. This solution is secure if at least one web server is honest
and does not log the random value that it sends to the application. However, a
similar solution would not work in JavaScript, as the security contraints of web
browsers do not allow JavaScript application to make HTTPS connections outside
the application’s DNS domain.

17

Conclusion

In this paper we look at the world wide web as a platform to gather data. Our
main concern is how to process private data so that its confidentiality would be
preserved. For example, this is the main challenge when conducting online surveys
and auctions. At the moment anonymity and secure connections are commonly
used to keep the data donor’s identity and answers in private. However, this is
not enough as the data donor still has to trust the party conducting the survey.

In January 2008, a large-scale auction was carried out in Denmark. The bids
were kept confidential by the means of secret sharing and using three independent
companies as auctioneer. The data processing phase used multiparty computation
protocols, so no one learned the original data. In this paper we analyse the used
architecture from the point of security and usability.

Firstly, we improve the usability of the architecture by using JavaScript tech-
nology on the client side. In the abovementioned auction, a Java applet was used
as a client side applicaion to collect the data. However, a JavaScript interpreter
is already built into most of the contemporary browsers, so no Java Runtime
Environment is needed. Also, JavaScript applications require less resources. Un-
fortunately, with this architecture, the client needs to trust the web server that
hosts the survey.

Secondly, we propose a new architecture that eliminates a security risk by
using secure HTTP connections. This eliminates the requirement for encrypting
shares as TLS/SSL provides the necessary security. We chose Adobe Flex platform
to implement our proposed architecture. Flex is a free open source framework
designed to develop rich client-side internet applications. Applications written in
Flex are run by Adobe Flash Player. Since most of the internet-enabled computers
already have Flash Player installed, applications built with Flex are convenient for
the clients.

We implemented both the JavaScript-based and the Flex-based solutions as a
part of this thesis. In our case, we used the Sharemind framework as the backend
privacy-preserving computation engine.

Both presented solutions can be used for private web-based data collection
either for the Sharemind framework or other secure multiparty computation sys-
tems.

18

Veebipõhine andmesisestus kõrgete privaatsusnõuetega

rakendustes

Bakalaureusetöö (4 AP)

Riivo Talviste

Resümee

Veebi kiire areng on endaga kaasa toonud mitmete teenuste muutumise veebi-
põhiseks. Viimasel ajal on üha populaarsemaks saanud mitmesugused veebipõhised
ankeedid, küsitlused ja oksjonid. Mitmed sellised rakendused eeldavad kasutajalt
konfidentsiaalsete andmete sisestust, kuid samas on delikaatsete andmete töötlemine
reguleeritud nii Euroopa Liidu kui ka Eesti seadustega. Seega tekib küsimus, kuidas
töödelda kasutaja sisestatud andmeid nii, et nende privaatsus säiliks.

Enamasti kasutatakse andmete privaatsuse säilitamiseks kliendi anonüümsust
või turvalisi suhtluskanaleid. Sellest aga tihti ei piisa, kuna on mitmeid juhtumeid,
kus ananüümne klient on tuvastatud ainuüksi tema poolt antud vastuste põhjal.
Samas, turvaliste suhtluskanalite kasutamise korral peab klient siiski usaldama
organisatsiooni, kellele ta oma andmeid jagab.

Taanis viidi 2008. aasta jaanuaris eksperimendi korras läbi suureulatuslik ok-
sjon. Kasutajate panuste salajas hoidmiseks kasutati andmete ühissalastust ning
oksjonipidaja rolli täitsid kolm sõltumatut organisatsiooni, kes omavahel koostööd
ei teinud. Andmete töötlemiseks kasutasid osapooled turvalise ühisarvutuse pro-
tokolle. Käesolevas töös analüüsime ja täiendame kasutatud süsteemi turvalisust
ja kasutatavust.

Esmalt parandame me Taanis kasutatud süsteemi mugavust, realiseerides selle
sama arhitektuuri JavaScript tehnoloogia abil. Taanis toimunud oksjonil kasutati
Java rakendit, aga see nõuab kasutajalt lisatarkvara olemasolu. Samas JavaScripti
interpretaator on enamikesse kaasaegsetesse veebilehitsejatesse juba sisse ehitatud
ning JavaScript nõuab arvutilt ka vähem ressursse kui Java virtuaalmasin. Kahjuks
ei lahenda JavaScripti kasutuselevõtt aga selle arhitektuuri turvariske — kasutaja
peab ikkagi täielikult usaldama veebirakenduse tegijat, et see tema andmeid ei
kuritarvitaks.

Järgmisena eemaldame me selle turvariski, kasutades turvalisi otseühendusi
kliendi ja andmetöötlust läbi viivate osapoolte vahel. Sellest tulenevalt ei pea
kliendi arvutis enam ühissalastatud andmeid krüpteerima, kuna vajaliku turva-
lisuse tagab turvaline sidekanal. Samuti ei pea kõiki osakuid saatma enam ühele
osapoolele, sest iga osapoolega on loodud eraldi usaldatav ühendus. Selle lahenduse
realiseerimiseks valisime Adobe Flex platvormi. Flex on tasuta avatud lähtekoodiga

19

raamistik, millega on võimalik luua interaktiivseid veebirakendusi, mis jookse-
vad kliendi veebilehitsejas. Flex rakendused nõuavad kliendi arvutis Adobe Flash
Playeri olemasolu. Kuna viimane on aga enamikes arvutites juba olemas, on selle
platvormi kasutamine kasutajale mugav.

Kõik selles töös kirjeldatud arhitektuurid sobivad veebipõhiseks privaatsust
säilitavaks andmekogumiseks ning on kasutatavad ühisarvutuse keskkonnas. Meie
välja pakutud arhitektuurid kasutavad turvalise ühisarvutuse teostamiseks Share-
mindi raamistikku.

20

References

[Bac] Michael Baczynski. A good pseudo-random number generator
(prng). Published online at http://lab.polygonal.de/2007/04/21/
a-good-pseudo-random-number-generator-prng/. Last visited on
May 26, 2009.

[BCD+08] Peter Bogetoft, Dan Lund Christensen, Ivan Damg̊ard, Martin Geisler,
Thomas Jakobsen, Mikkel Krøigaard, Janus Dam Nielsen, Jesper Buus
Nielsen, Kurt Nielsen, Jakob Pagter, Michael Schwartzbach, and
Tomas Toft. Multiparty computation goes live. Cryptology ePrint
Archive, Report 2008/068, 2008. http://eprint.iacr.org/.

[BJ06] Michael Barbaro and Tom Zeller Jr. A face is exposed for AOL searcher
no. 4417749. The New York Times, August 9th, 2006.

[BLW08] Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A frame-
work for fast privacy-preserving computations. In Sushil Jajodia and
Javier López, editors, ESORICS, volume 5283 of Lecture Notes in Com-
puter Science, pages 192–206. Springer, 2008.

[CD04] Ronald Cramer and Ivan Damg̊ard. Multiparty computation, an intro-
duction. Course Notes, 2004.

[Cou95] European Council. Directive 95/46 on the protection of individuals
with regard to the processing of personal data and on the free move-
ment of such data. OJ L 281, 1995.

[Dam02] Ivan Damg̊ard. Secret sharing. Course notes, 2002.

[Des] Partisia Market Design. Partisia market design. Published online at
http://partisia.com/. Last visited on May 26, 2009.

[DR01] Joan Daemen and Vincent Rijmen. Advanced encryption stan-
dard (aes) (fips 197). Technical report, Katholijke Universiteit Leu-
ven/ESAT, 2001.

[Inca] Adobe Systems Incorporated. Flash player penetration. Pub-
lished online at http://www.adobe.com/products/player_census/

flashplayer/. Last visited on April 23, 2009.

[Incb] Adobe Systems Incorporated. Flex overview. Published online at http:
//www.adobe.com/products/flex/overview/. Last visited on April
23, 2009.

21

[MvOV96] Alfred Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Hand-
book of Applied Cryptography. CRC Press, 1996.

[PM88] Stephen K. Park and Keith W. Miller. Random number generators:
Good ones are hard to find. Commun. ACM, 31(10):1192–1201, 1988.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for
obtaining digital signatures and public-key cryptosystems. Commun.
ACM, 21(2):120–126, 1978.

[RTI] Personal data protection act. RTI, 16.03.2007, 24, 127; Published on-
line at http://www.legaltext.ee/text/en/XXXX041.htm. Last vis-
ited on May 29, 2009.

[RTI07] Isikuandmete kaitse seadus. 15.02.2007. - RT I 2007, 24, 127; RT I
2007, 68, 421, 2007.

[Sha79] Adi Shamir. How to share a secret. Communications of the ACM,
22(11):612–613, 1979.

[Wu] Tom Wu. Bigintegers and rsa in javascript. Published online at http:
//www-cs-students.stanford.edu/~tjw/jsbn/. Last visited on May
26, 2009.

22

